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Abstract 

Background The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing 
of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering 
efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies 
have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. 
Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers.

Results We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. 
Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-
sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth 
phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data 
was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-
deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. 
toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remod-
eled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase 
in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surpris-
ing pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid 
accumulation.

Conclusions Integrative analysis identified the specific biosynthetic pathways that are differentially regulated dur-
ing lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future meta-
bolic engineering strategies for overproduction of oleochemicals.
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Background
The unicellular microorganism yeast is a promising plat-
form for industrial-scale fermentations of value-added 
compounds. As a model yeast, Saccharomyces cerevisiae 
has been extensively characterized and engineered to 
produce a wide variety of bioproducts [1, 2]. However, 
S. cerevisiae is not an ideal host for overproducing lipids 
and lipid-related chemicals, also called oleochemicals. 
Oleaginous yeasts such as Yarrowia lipolytica and Rho-
dotorula toruloides, which can accumulate a much higher 
fraction of their biomass as lipids, are theoretically bet-
ter platforms for producing oleochemicals [3, 4]. The 
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basal metabolism of these yeasts results in a higher yield 
of lipids per substrate consumed, which is required to 
make such industrial fermentations economically viable. 
The red yeast R. toruloides is capable of accumulating as 
high as 70% of its biomass as lipids, while also allowing 
high cell density cultures, thus resulting in high titers of 
lipid production [5, 6]. Besides a high flux in lipid biosyn-
thesis, R. toruloides is also known to show high tolerance 
towards inhibitory compounds, specifically those found 
in lignocellulosic biomass hydrolysate [7–9]. This toler-
ance combined with an ability to consume hexose and 
pentose sugars, both found in lignocellulosic biomass 
hydrolysate, suggests that R. toruloides can serve as a bet-
ter host for converting lignocellulosic sugars into value-
added compounds.

As R. toruloides accumulates high levels of lipids and 
carotenoids, both of which are synthesized from acetyl-
CoA, R. toruloides has the potential to serve as a platform 
strain for producing a variety of compounds synthesized 
from acetyl-CoA. Previous studies have explored over-
producing lipids in R. toruloides through a variety of 
strategies like inhibiting fatty acid degradation, increas-
ing the flux of acetyl-CoA or other biosynthesis reactions 
in lipid pathways [6, 10]. Other work has focused on the 
production of fatty alcohols and triacetic acid lactone, 
both of which are synthesized from acetyl-CoA [11, 12]. 
The strategies implemented in most metabolic engineer-
ing studies so far focus on similar strategies of reduc-
ing lipid catabolism, increasing precursor supply, and 
introducing a heterologous enzyme (push–pull-block 
strategy).

While R. toruloides appears to be a promising host 
for the biomanufacturing of oleochemicals, the micro-
organism poses several challenges. It is considered a 
non-model yeast and as such, its metabolism is not well 
understood. While the accumulation of lipids in low 
nitrogen conditions has been well reported, the molecu-
lar basis of this phenotype has not been clearly elucidated 
[13]. Thus, to harness the full potential of R. toruloides 
in metabolic engineering applications, it is desirable to 
understand the mechanism of lipid accumulation.

Within systems biology, transcriptomic analysis is a 
robust analytical technique providing insights into the 
transcriptional machinery of an organism. Other stud-
ies endeavoring to find the molecular basis of lipid 
accumulation in R. toruloides have also employed tran-
scriptomic analysis for their investigations. Coradetti 
et al. performed transcriptomic analysis of a library of R. 
toruloides loss-of-function mutants to identify putative 
genes affecting lipid metabolism in the yeast [14]. Zhu 
et  al. employed a multi-omic method where genomic, 
transcriptomic and proteomic data were integrated to 
identify correlations between lipid accumulation and 

nitrogen compound recycling [13]. Recently, Jagtap et al. 
performed a transcriptomic and metabolomic analysis of 
R. toruloides grown on different sugars, identifying regu-
lation patterns in central metabolic pathways as a result 
of growth on different substrates [15]. In other yeasts 
such as Y. lipolytica, multi-omic analysis, which included 
a genome-scale model, metabolite profiling, lipidomic 
analysis and transcriptomic data from RNA-Seq, iden-
tified the origin of lipid accumulation in flux rewiring 
within the amino acid metabolism [16]. However, in R. 
toruloides, no such integrated transcriptomic and lipid-
omic analysis has been performed so far.

In this study, we undertake a multi-omic investigation 
of lipid accumulation in R. toruloides. Nitrogen-sufficient 
and nitrogen-deficient conditions were studied to con-
trast a neutral phenotype against a lipid accumulation 
phenotype. The cells grown in both conditions were har-
vested for both transcriptomic and lipidomic analyses. As 
a primary analysis, clustering analysis of the transcrip-
tomic data was qualitatively correlated against a similar 
trend in lipidomic data. Hierarchical clustering of the 
lipid data, however, showed a different clustering pattern 
than that seen from RNA-Seq clustering. Multi-omic 
analysis of the transcriptomic and lipidomic data indi-
cated a lipid remodeling event wherein glycerophospho-
lipids pathways are repressed whereas most of the carbon 
is shifted towards storage lipids. Our work represents the 
first comprehensive study integrating transcriptomic and 
lipidomic analyses of lipid accumulation phenotypes in R. 
toruloides.

Results
Experimental design for studying the lipid accumulation 
phenotype
The growth and lipid accumulation phenotypes of R. 
toruloides IFO0880 were studied in three different media 
conditions. The three conditions were formulated to 
contain C/N ratios of 5, 100 and 150. A C/N ratio of 5 
represented a baseline medium with nitrogen in suffi-
cient concentration; a similar value was chosen to grow 
seed cultures in a previous study [17]. A study from 2020 
tested the lipid accumulation capabilities of R. toruloides 
grown in media formulations ranging between C/N of 60 
to 120 [5]. In the current study, a C/N ratio of 100 was 
chosen as a nitrogen-deficient media formulation known 
to promote lipid accumulation. Additionally, media with 
a C/N ratio of 150 was also included to study the effects 
of extreme nitrogen starvation. Samples were collected 
at three time points during growth: 8 h (early exponen-
tial phase), 12 h (mid-exponential phase) and 36 h (early 
saturation phase). For the two nitrogen-deficient condi-
tions (C/N of 100 and 150), an additional sample at 88 h 
of growth was added (Fig. 1).
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Transcriptomic analysis of lipid accumulation dynamics
RNA-Seq analysis was used to inspect the differential 
gene expression in R. toruloides IFO0880 across different 
conditions and time points as described above. Hierar-
chical clustering of the RNA-Seq data showed that dur-
ing the early exponential growth phase, when nitrogen 
is still available in all three media conditions, the tran-
scriptomes of cells grown in the different media condi-
tions cluster together (Fig. 2). As nitrogen depletion took 
effect during mid-exponential phase, the cultures grown 
in C/N of 100 and 150 began to diverge from C/N of 5, 

where nitrogen was still expected to be available. This 
divergence is highlighted even further in the early and 
late-saturation samples where nitrogen-depleted con-
ditions cluster together. Principal component analysis 
(PCA) aided in improved visualization and analysis of 
this divergence where the lipid-accumulating and non-
lipid-accumulating samples clearly follow different trajec-
tories and cluster separately (Fig. 3). A clustered heatmap 
of the RNA-seq data was plotted for gene expression data 
collected across different media conditions and different 
time points (Additional File 1: Figure S1). The mRNAs 

Fig. 1 Experimental design scheme depicting the growth curves of R. toruloides IFO0880 in media with different C/N ratios. The green arrows 
in each plot represent the times when culture samples were collected for transcriptomic and lipidomic analysis

Fig. 2 Hierarchical clustering performed on the time-based RNA-Seq analysis of R. toruloides cultures. The samples are shaded using different color 
boxes to lump together samples from different phases of growth. From left to right: Early exponential, Exponential, Glucose starvation, Nitrogen 
starvation and Oleaginous growth phases



Page 4 of 14Mishra et al. Microbial Cell Factories          (2024) 23:141 

were clustered into three groups – either showing a 
decrease in expression when switching from high nitro-
gen to low nitrogen, approximately constant expression 
during the switch, or showing an increase in expression 
when switching from high nitrogen to low nitrogen. The 
cluster identities are located in Additional File 2: Table S1 
under the column RNA-seq Cluster ID.

RNA-Seq data were used to identify the subset of genes 
that were differentially expressed in conditions of nutri-
ent starvation compared to baseline cultures. A threshold 
of greater than twofold change in gene expression (which 
includes up- and down-regulation) was employed. From 
the identified differentially expressed genes, the fraction 
of up- and down-regulated genes in all annotated path-
way classes for R. toruloides IFO0880 were calculated 
and displayed as a horizontal bar graph. Figure 4 shows 
one such analysis for the comparison of differentially 
expressed genes between C/N of 100 and 150 compared 
to C/N of 5 at the 36-h time point. Since the same set of 
genes were differentially expressed in both C/N 100 and 
150 in comparison with C/N 5, the conditions could be 
plotted interchangeably. The figure shows the metabolic 
classes with the highest fraction of up-regulated genes 
at the top and those with the highest fraction of down-
regulated genes at the bottom. Inspection of this plot 
shows that during nitrogen starvation in C/N 100 and 
150, the metabolic processes of translation, transcription 
and secondary metabolism were entirely down-regulated. 

Fig. 3 Principal component analysis of the RNA-Seq dataset showing 
the clustering of nitrogen-sufficient and nitrogen-deficient cultures. 
Additionally, cultures also cluster together based on the growth 
phase, with a clear divergence emerging at the exponential growth 
phase cultures (12 h of growth)

Fig. 4 Gene set analysis of nitrogen limitation in R. toruloides IFO0880. The differentially expressed genes were sampled at a timepoint of 36 h 
and contrasted between nutrient limited conditions of C/N 100 and 150 versus C/N 5 (which served as a baseline). Since the same set of genes 
were differentially expressed in both C/N 100 and 150 in comparison with C/N 5, the conditions could be plotted interchangeably
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Genes involved with amino acid metabolism also see 
a major fraction of differential expression as down-reg-
ulation. This trend has also been noticed in Y. lipolytica 
where nitrogen starvation significantly down-regulated 
amino acid metabolism [16]. However, in contrast with 
the findings of the Y. lipolytica study, genes involved in 
lipid metabolism were more differentially regulated in 
R. toruloides compared to the baseline condition. The 
study in Y. lipolytica reported minimal regulatory impact 
of nitrogen starvation on lipid metabolic genes, whereas 
our data indicated significant regulation in R. toruloides. 
The gene set analysis for differentially expressed genes at 
the 36-h time point was also contrasted to similar analy-
sis for differentially expressed genes at the 8-h and 12-h 
time points (Additional File 3: Figure S2). As expected 
from the PCA plot in Fig. 3, at the 8-h mark, both media 
conditions showed very similar expression profiles and 
very few differentially expressed genes or pathways (Fig-
ure S2-A). A greater number of differentially expressed 
pathways began to emerge at the 12-h mark between 
strains grown in C/N 100 (or 150) compared to C/N 5, 
with the metabolism of complex carbohydrates, complex 
lipids and secondary metabolites showing significant 
upregulation (Figure S2-B). While secondary metabo-
lism appeared to be completely down-regulated at the 

36-h time point (Fig. 4), that of complex lipids and car-
bohydrates continued to be up-regulated under nitrogen 
deficient conditions, suggesting an important role in lipid 
accumulation.

Lipidomic analysis of lipid accumulation dynamics
Liquid chromatography–mass spectrometry (LC–MS) 
was used to perform lipidomic analysis of extracted 
lipids from R. toruloides IFO0880 cells. The cells were 
harvested at the time points denoted by green arrows in 
Fig.  1. This allowed a time-based inspection of the lipi-
dome for both lipid-accumulating and non-lipid-accu-
mulating phenotypes.

At the earlier time points, the measured lipid concen-
trations followed a similar trend to the expected clus-
tering behavior observed from RNA-Seq data shown in 
Fig. 2 and Fig. 3. Lipid concentrations for the early expo-
nential samples (8h growth) showed similar levels for all 
major lipid classes (Fig.  5). The divergence of lipid pro-
files at the exponential (12h sample) and saturation phase 
(36h sample) was noticeable in the phospholipid pools 
(Fig.  5A-D). Most glycerophospholipids (phosphatidyl-
choline (PC), phosphatidylethanolamine (PE), phos-
phatidylinositol (PI) and phosphatidylglycerol (PG)) were 

Fig. 5 Lipidomic analysis of R. toruloides IFO0880 strain cultivated in different growth media containing C/N ratios of 5, 100 and 150, and sampled 
at various timepoints. Shown here are quantified lipid classes of all three growth conditions sampled at 8 h, 12 h, 36 h and 88 h of growth. A) 
Phosphatidylcholine (PC), B) Phosphatidylethanolamine (PE), C) Phosphatidylglycerol (PG), D) Phosphatidylinositol (PI), E) Diacylglycerol (DAG), 
and F) Triacylglycerol (TAG)
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higher in C/N of 5 compared to C/N of 100 or 150 (Fig. 5 
A-D, Additional File 4: Figure S3).

At the late saturation phase of oleaginous lipid accu-
mulation, samples were only collected for C/N of 100 and 
150, and, hence, lipid measurements were only available 
for lipid accumulating phenotypes. At this late stage of 
growth, the fraction of lipids within the cells is mostly 
TAG. Analysis of TAG levels within the two lipid-accu-
mulating phenotypes shows a divergence in TAG levels 
with C/N 150 continuing to store carbon as TAG even 
after 88 h of growth, while TAG levels show a decrease 
in C/N 100 at the same time point (Fig.  5F, Additional 
File 5: Figure S4). Extracellular measurements (Fig.  1) 
show that the strain cultivated in C/N 100 media has 
consumed most of the glucose by this point in growth 
while significant amounts of glucose remain unconsumed 
in C/N 150. This measurement combined with the lipid-
omic dataset suggests that in the C/N 150 media, R. toru-
loides continues to accumulate carbon into TAG much 
longer, while the strain grown in C/N 100 media, having 
depleted most of its sugar substrate, potentially relies on 
lipid remodeling to generate carbon for continued sur-
vival. Within the set of annotated mRNA transcripts that 
were differentially expressed, the glycerol dehydrogenase 
was up-regulated in the C/N 100 condition at 88 h com-
pared to the C/N 150 sample, suggesting increased activ-
ity in glycerolipid catabolism.

Further inspection of the distribution of lipids showed 
that in all three growth conditions, the distribution of 
lipids shifts from mostly phospholipids towards mostly 
storage lipids. At the start of each growth culture (before 
nitrogen starvation takes effect), phospholipids dominate 
the fraction of intracellular lipids. As each growth condi-
tion progresses with time, the fraction of phospholipids 
was seen to subside and replaced almost entirely by stor-
age lipids (Fig.  6). While culture conditions of C/N 100 
and 150 closely resembled each other in trajectory, even 
C/N 5 showed a similar trend, albeit with different values.

A shift in the total intracellular lipids from phospho-
lipids to storage lipids further reinforces the notion of 
an active lipid remodeling process as nitrogen starva-
tion starts to take effect. Studies in the model oleagi-
nous yeast, Y. lipolytica, have demonstrated that nitrogen 
limitation causes an overall increase in lipid pools in that 
organism [16, 18]. They show that nitrogen limitation in 
Y. lipolytica causes little change to transcriptional regu-
lation in lipid metabolism and instead modulates amino 
acid metabolism. The overall increase in lipid levels has 
been attributed to an overflow of carbon into lipid bio-
synthetic pathways [16]. In contrast, however, the results 
shown in Fig.  4 and Fig.  6 suggest that nitrogen starva-
tion in R. toruloides is accompanied by significant lipid 
regulation.

A hierarchical clustering analysis of the lipidomic data 
was performed (Fig.  7), which shows that the 88-h and 
36-h time points cluster similarly while the 8-h and 12-h 
time points cluster together. The latter suggests that the 
divergence in the RNA-Seq data that appears at 12 h of 
growth manifests in lipid phenotypes with a time delay, 
which is generally observed in RNA-metabolite trends 
[19].

Multi‑omic integrated analysis of lipid accumulation
So far, all literature reported investigations on the lipid 
accumulation phenotype of R. toruloides IFO0880 were 
performed using individual omic analyses, namely tran-
scriptomic and lipidomic analysis in isolation. However, 
each of these datasets only present a partial picture of 
the biological processes governing the oleaginous yeast’s 
behavior. The transcriptomic dataset indicates snapshots 
of the gene expression profile of the cells, whereas the 
lipidomic dataset conveys a snapshot of the lipidome. 
Thus, a systematic method of analysis that reasonably 
integrates both datasets was sought for analysis.

An integrative method of analysis previously described 
in Hsu and coworkers [20] was employed wherein tran-
scriptomic and metabolomic profiles were analyzed 
together in the form of a cluster map. The 4 quadrants 
of such a cluster map were then imposed onto a path-
way diagram to convey the correlations between nodes 
(metabolites) and edges (reactions) of the graph (meta-
bolic pathway). We adopted a similar approach to analyze 
our data and visualize the correlated nodes and edges 
with the goal of formulating better hypotheses about the 
lipid accumulation pathway. A cluster map capturing the 

Fig. 6 Variation in the fraction of total lipid pool in R. toruloides 
IFO0880 at each time point and for each growth condition. Two 
fractions are calculated: fraction of phospholipids (solid line) 
and fraction of storage lipids (dash-dot line)
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correlations between measured transcripts and lipids 
was constructed for each condition with the horizontal 
axis representing the mRNA transcripts and the verti-
cal axis consisting of the lipids. The cluster map (Fig. 8) 
shows the correlations between lipids concentrations 
and mRNA transcript levels across all media conditions 
and time points. The cluster identities can be found in 
Table S1 under the column Multi-omics Cluster ID.

The cluster map (Fig.  8) demonstrated that lipids 
and mRNAs both cluster into 3 groups each. The two 
mRNA clusters demonstrating either mostly negative 
or mostly positive correlations with TAGs (cluster P1 in 
the top-right and cluster P2 in the center-right in Fig. 8, 
respectively) were of particular interest. To explore 
the pathways that these mRNAs were associated with, 
a pathway enrichment analysis (similar in method to 
the gene enrichment analysis shown in Fig. 4) was con-
ducted. The list of mRNAs associated with a known reac-
tion were fractioned into groups that are either negatively 
or positively correlated with TAG levels (Fig.  9). The 
pathways related to RNA polymerase and aminoacyl-
tRNA biosynthesis were fully negatively correlated with 
TAG levels, in agreement with the earlier observation 
of complete down-regulation of transcription and trans-
lation at the 12-h and 36-h time points (Figure S2 and 
Fig.  4). Pathways with greater than 50% positive corre-
lation with TAG levels included the expected pathways 
in glycerolipid metabolism, fatty acid metabolism and 
fatty acid biosynthesis. Surprisingly, the pathway associ-
ated with inositol phosphate metabolism showed strong 
positive correlation with TAG despite the decrease in 

phosphatidylinositol (PI) levels during lipid accumulation 
(Fig. 5). Phosphatidylinositols are known to be associated 
with signaling roles and well-studied in yeasts such as S. 
cerevisiae. They specifically have been identified to influ-
ence the metabolism of storage lipids [21]. Analyzing the 
overlap between cluster identities of each mRNA from 
the clustermap analysis of just RNA-Seq data (Figure S1) 
compared to the clustermap analysis of the multi-omic 
data (Fig. 8) showed an interesting trend (Additional File 
6: Figure S5). The mRNA cluster positively correlated 
with TAG levels (cluster P2 in Fig.  8) was inhabited by 
only mRNA that increased in expression when switch-
ing from high-nitrogen to low-nitrogen state. Similarly, 
the mRNA cluster negatively correlated with TAG lev-
els (cluster P1 in Fig. 8) was mostly inhabited by mRNAs 
that decreased in expression when switching from high-
nitrogen to low-nitrogen.

Discussion
The non-model yeast R. toruloides is a promising chas-
sis for metabolic engineering due to its ability to accu-
mulate lipids at a much higher fraction than the model 
yeasts [22]. However, the lipid accumulation phenotype 
is generally induced under nutrient starvation condi-
tions, where growth is compromised, leading to a trade-
off between lipid levels and biomass [5, 23]. Identifying 
the mechanism that governs accumulation is thus crucial 
for any effort to engineer a platform strain that can be 
employed for overproduction of oleochemicals [13]. In 
this work, we performed a comprehensive study of lipid 
accumulation phenotypes in R. toruloides by integrating 

Fig. 7 Hierarchical clustering performed on the time-based lipidomic analysis of R. toruloides cultures
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transcriptomic and lipidomic analyses to identify the 
metabolic and regulatory processes that contribute the 
most to lipid accumulation for engineering purposes. We 
observed that the transcriptomic profiles for nitrogen-
rich and nitrogen-deficient cultures clustered separately, 
with the divergence of profiles emerging as early as the 
exponential growth phase. The lipidomic profiles, how-
ever, showed greater similarity between the two types of 

growth conditions. Lipidome trends measured in the C/N 
of 5 trailed those of C/N 100 or 150 with a time-delay, 
presumably mirroring the trend of nitrogen consump-
tion. Pathway visualization techniques demonstrated a 
map of increased regulation within the lipid biosynthe-
sis pathway wherein neighboring reactions were either 
up- or down-regulated during lipid accumulation. These 
localized regulations along with trends observed within 

Fig. 8 Cluster map capturing the correlations between measured transcripts and lipids, constructed for each condition with the horizontal axis 
representing the mRNA transcripts and the vertical axis consisting of the lipids. It shows the correlations between lipids concentrations and mRNA 
transcript levels across all media conditions and time points. The cluster identities can be found in Table S1 under the column Multi-omics Cluster ID
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the lipidomic data proved that the oleaginous yeast R. 
toruloides displayed lipid remodeling during the accumu-
lation phase instead of a uniform increase in all lipids.

Nitrogen starvation was applied in two different car-
bon-to-nitrogen ratios (C/N of 100 and 150) but both 
cultures showed similar transcriptomic responses com-
pared to the baseline condition of C/N of 5. Clustering 
analysis of transcriptomic data showed a clear divergence 
of trajectories between the baseline and the nitrogen-
starved conditions, with the split occurring from the 
12-h timepoint itself (Fig.  3). While the divergence of 
transcriptomic profiles grew more prominent at the satu-
ration phase timepoint of 36 h, the intracellular lipid pro-
files showed much less distance in the clustering patterns 
(Fig.  7, Additional File 1: Figure S1 and Additional File 
2: Figure S2). This similarity of lipidomes as the cultures 
progressed in time can be explained by the fact that, over 
time, each growth condition (including C/N of 5) would 
become more nitrogen deficient because nutrients get 
used up by the cells with nothing being replenished. Fur-
ther, the intracellular phospholipid profiles of C/N 5 cul-
ture at the 36-h mark resemble the profiles of the C/N 
100 and 150 at the earlier 12-h measurements, suggest-
ing that the C/N 5 condition experiences a similar form 

of nitrogen starvation at 36 h of growth as that faced by 
C/N 100 and 150 at about 12 h of growth.

The lipidomic timeseries profiles for all 3 conditions 
followed similar trends (Fig.  5) with a drop in mostly 
phospholipid-based lipidome being accompanied by a 
rise in mostly storage lipid-based one (DAG and TAG). 
This trend was demonstrated in Fig.  6 where the frac-
tion of phospholipids dropped with increase culture time 
for all 3 growth conditions, while the fraction of storage 
lipids increased. Thus, unlike a trend of overall increase 
in lipids seen in Y. lipolytica [16], the increase in lipid 
pools in R. toruloides from nitrogen starvation resulted 
mainly in the increase of storage lipids. The selective 
decrease/increase of different lipid pools during the lipid 
accumulation phase suggested that lipid accumulation 
is accompanied by strong regulation of the lipid biosyn-
thetic pathways. This contrasts with the findings in Y. 
lipoytica where regulation of the lipid pathways exerted 
very weak control over the lipid accumulation phenotype 
[16].

To identify the lipid biosynthetic pathways, whose 
up- or down-regulation most significantly influenced 
this observed lipid remodeling, the two ‘omic datasets 
were analyzed in an integrated manner. A cluster map 

Fig. 9 Pathway enrichment analysis. The list of mRNAs associated with a known reaction were fractioned into groups that are either negatively 
or positively correlated with TAG levels
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enabled the binning of lipids and lipid biosynthetic 
reactions that showed a similar increase or decrease 
(Fig.  8). Pathway visualization (Figure S6) showed a 
clear shutdown of phospholipid biosynthesis pathways 
under lipid accumulation conditions, which agreed 
with the decreasing phospholipid levels observed in 
lipidomic data. More interestingly, the pathway maps 
also showed that lipid accumulation was accompanied 
with a positive correlation in the acylglycerol forma-
tion from the dihydroxyacetone phosphate (DHAP) 
pathway, indicating that the increased carbon into the 
TAG and DAG pools originated from the acylation of 
the glycerol-3-phosphate backbone.

The multi-omic integrative analysis enabled the 
identification of reactions that were regulated in a 
coordinated manner with an increase in storage lipids. 
The trend of the increase in lipids was observed in 
the direction of only storage lipids rather than a net 
increase of all intracellular lipid pools. Future stud-
ies can leverage the knowledge of these regulated 
pathways for developing engineering strategies. The 
strategy of multi-omic analyses for identifying lipid 
accumulation phenotypes has been employed in other 
organisms [24]. A study by Ajjawi et  al. identified a 
putative set of transcriptional factors (TFs) that gov-
erned lipid production in the microalga Nannochloro-
psis gaditana under nitrogen-deficient conditions [25]. 
CRISPR-based knockdown of this putative set helped 
identify one TF that resulted in higher lipid accumu-
lation without affecting growth. Such a method could 
be adapted to R. toruloides using CRISPR-interference 
systems with the goal of discovering global transcrip-
tional factors that result in a lipid overproducing plat-
form strain.

Conclusions
In this study, we performed a multi-omic analysis of the 
lipid accumulation phenotype in the oleaginous yeast 
R. toruloides IFO0880 under nitrogen starvation. Tran-
scriptomic analysis indicated divergent timeseries pro-
files of the baseline growth media (C/N of 5) compared 
to the nitrogen-deficient media (C/N of 100 and 150). 
Lipidomic analysis showed dissimilar lipid profiles at 
the start with the C/N 5 lipidome eventually converging 
towards the C/N 100, 150 lipidomes as nitrogen levels 
decreased over time. Multi-omic analysis of the growth 
conditions suggested that nitrogen starvation causes 
the lipidome to remodel with most of the glycerophos-
pholipid pool shifting towards storage lipids. Thus, in 
batch culture conditions in R. toruloides, we observed a 
selective increase in storage lipids during nitrogen star-
vation instead of an overall increase of all lipids.

Methods
Strains, media, and growth construction
R. toruloides IFO0880, mating type A2, was obtained 
from the NITE Biological Resource Center in Japan 
(NBRC 0880). YPD medium (10 g/L yeast extract, 20 g/L 
peptone, and 20 g/L glucose) was used for growth of R. 
toruloides precultures. A single colony from a YPD agar 
plate was inoculated into 2  mL of YPD liquid medium 
to obtain R. toruloides seed cultures. Seed cultures were 
then used to inoculate 25  mL of media with a defined 
carbon-to-nitrogen ratio in a 125-mL baffled shake flask 
with a starting  OD600 of 1. The optical density at 600 nm 
or  OD600 was used to monitor the cell density in liquid 
cultures.  OD600 of 1.0 corresponds to roughly  107 cells 
per mL. The cells were then grown at 30 °C and 250 rpm. 
The formulation of media for different C/N ratios is listed 
in Additional File 8: Table S2.

Sample extraction for RNA‑Seq
Seed cultures at exponential phase were collected and 
centrifuged at 6000 × g for 3  min at 4  °C. Supernatant 
was discarded and the pellets were resuspended in 1 mL 
of  ddH2O. Seed cultures then used to inoculate 25 mL of 
growth media with defined carbon–nitrogen ratios in a 
125-mL baffled shake flask with a starting  OD600 of 1 and 
incubated at 30 °C and 250 rpm. Growth experiments are 
performed with three biological replicates. Samples were 
collected at defined timepoints as described in Sect. 3.1. 
The cell cultures containing a total OD of 30 were col-
lected in centrifuge tubes and centrifuged at 6000 × g 
for 3 min at 4  °C. Supernatant was discarded and pellet 
was used for RNA extraction. Total RNA was extracted 
using the RNeasy mini kit (Qiagen, Hilden, Germany) as 
previously described, with a slight modification [26, 27]. 
The R. toruloides cell pellet was resuspended in 350 µL 
of Buffer RLT from the RNeasy mini kit (Qiagen, Hilden, 
Germany). Approximately 500 µL of acid-washed glass 
beads (acid washed, 425–600 μm; Sigma, St. Louis, MO, 
USA) was added and homogenized using a FastPrep-24 
homogenizer (MP Biomedicals, Irvine, CA, USA), beaten 
at a speed of 5 m/s for 30 s six times with cooling on ice 
between beatings. The cell lysates were purified accord-
ing to the kit’s protocol titled “purification of total RNA 
from yeast.” Extracted RNA was then treated with Turbo 
RNase-free DNase kit (ThermoFisher, Waltham, MA, 
USA) according to the manual and purified again with 
the RNeasy mini kit protocol titled “RNA clean up.” The 
stranded RNAseq libraries were prepared with Illumina’s 
TruSeq Stranded mRNA Sample Prep kit. The libraries 
were quantitated by qPCR and sequenced on one lane 
for 101 cycles from one end of the fragments on a HiSeq 
4000 (Illumina, San Diego, CA, USA). Fastq files with 
100 bp reads were generated and demultiplexed with the 
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bcl2fastq v2.17.1.14 Conversion Software (Illumina, San 
Diego, CA, USA).

RNA‑Seq data analysis
To obtain gene  expression profiles during growth of 
R. toruloides IFO0880 on different substrates, total 
RNA was extracted, and a mRNA focused library was 
sequenced. Adaptor sequences and low-quality reads 
were trimmed using Trimmomatic [28]. Trimmed reads 
were analyzed for quality scores using FastQC [29]. Reads 
were mapped to the R. toruloides IFO0880 v4.0 reference 
genome (NCBI Accession GCA_000988875.2) with STAR 
version 2.5.4a [14, 30]. Between 95 and 98% of the reads 
were successfully mapped to the genome for each sample. 
Read counts were calculated using featureCounts from 
the Subread package, v1.5.2 [31]. Differential  expression 
analysis  was performed on the reads counts in R v4.0.5 
(Cite R core team) using edgeR v3.32.1 and limma v3.46.0 
[32, 33]. The iDEP software suite was also used for pre-
liminary analysis of gene expression data [34]. Graphical 
representation of expression data was constructed using 
R packages: PCAtools v2.2.0, gplots v3.1.1, and Glimma 
v2.0.0 [35–37]. Before plotting heatmaps, the data was 
normalized row-wise (using the scale function in R), first 
by centering (subtracting the row mean from each value) 
and then scaling (dividing each data point by row’s stand-
ard deviation). Heatmaps were plotted using heatmap.2 
function from gplots. Genome sequence, gene models, 
and functional annotation of R. toruloides was down-
loaded from the DOE Joint Genome Institute’s Myco-
cosm portal [14, 38]. The raw fastq RNA-seq files have 
been deposited at https:// www. ncbi. nlm. nih. gov/ biopr 
oject/ PRJNA 10000 66 (Bioproject ID: PRJNA1000066).

Sample preparation for lipidomics analysis
At the time of sampling, cell concentration of the cul-
ture was measured as  OD600/mL. One mL of cell culture 
was harvested, washed once with 150  mM ammonium 
bicarbonate (ABC) buffer (pH = 8), then resuspended 
in 500 µL ABC, and lysed open with approximately 200 
µL of 0.5 µm zirconium glass beads via high-speed vor-
texing for 30 min. For lipid extraction, 2  OD600 units of 
cell lysate were added to a glass tube containing 200 µL 
ABC, 1 mL of 2:1 chloroform:methanol and 12 µL of an 
internal standard cocktail (mole amounts of each lipid 
in the cocktail listed in Additional File 9: Table S3). The 
glass tube was vortexed in a Fisherbrand MultiTube Vor-
texer (Thermo Fisher Scientific, Waltham, MA) for 2  h 
at 2500 rpm. After the phases were clearly separated, the 
chloroform layer was separated into a fresh vial and dried 
overnight. The dried lipid extract was resuspended in 100 
µL of 4:2:1 isopropanol:methanol:chloroform. 10 µL of 
the lipid extract was injected on an LC–MS instrument 

(Vanquish UHPLC and Q-Exactive Orbitrap, Thermo 
Fisher Scientific, Waltham, MA).

Lipidomic data generation and data analysis
The LC–MS protocol was followed as described in [39]. 
LC separation was performed on a Thermo Accucore 
Vanquish C18 + column (2.1 × 150  mm, 1.5  µm) with 
mobile phase A (60% acetonitrile: 40% H2O with 10 mM 
ammonium formate and 0.1% formic acid) and mobile 
phase B (90% isopropanol: 10% acetonitrile with 10 mM 
ammonium formate and 0.1% formic acid) and a flow 
rate of 0.25 mL/min. The linear gradient was as follows: 
0 min, 60% A; 12 – 13.5 min, 0% A; 14 – 16 min, 60% A. 
The gas flow rates and MS1/MS2 scan parameters were 
followed exactly as listed in [39]. Data processing of the.
RAW files generated from LC–MS runs was performed 
using the MS-DIAL software [40]. Identity of lipids was 
ascertained by comparing spectra to an in-house data-
base of lipid molecules. Finally, quantification was per-
formed using a one-point calibration where the peak 
intensity of each lipid molecule was normalized to the 
intensity of the representative lipid for its class within 
the spiked-in internal standard cocktail. This normalized 
value was multiplied to the absolute mole amount of the 
internal standard. The lipidomic data after processing 
and quantification is available in the units pmol/OD600 in 
Additional File 10: Table S4.

Multi‑omic data analysis
The multi-omic data analysis and visualization were 
performed using the seaborn and matplotlib libraries in 
Python [41, 42]. The clustermaps and pathway enrich-
ment analysis plots were visualized using in-house scripts 
that employed the above two libraries. For pathway visu-
alization, Escher maps were used that were developed in 
a previous study describing a genome-scale model in R. 
toruloides [43, 44].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12934- 024- 02414-0.

Additional file 1. Figure S1. Clustered heatmap of the RNA-seq expres-
sion data collected across different media conditions and different 
timepoints. The x-axis represents all the samples with individual replicates 
denoting the different growth media conditions and timepoints of 
sampling. The hierarchical dendrogram for the x-axis was computed using 
Euclidean distances between each pairwise combination of the samples’ 
mRNA expression profile. The y-axis denotes the subset of mRNA that had 
accompanying annotations. The hierarchical dendrogram for the y-axis 
was computed using the Pearson’s correlation matrix computed between 
pairwise combination of each mRNA (which was expressed as a numeric 
vector containing its expression count in each sample). The mRNA and 
samples were each assigned cluster identities (C1, C2, C3 and S1, S2, S3, 
S4, S5 respectively) as well as color labels along the left and top edges to 
distinguish the different clusters more easily. Further, a label of “High-N” 
and “Low-N” was assigned to cluster samples that were estimated to be 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1000066
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1000066
https://doi.org/10.1186/s12934-024-02414-0
https://doi.org/10.1186/s12934-024-02414-0
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in the nitrogen-sufficient or nitrogen-deficient regimes, respectively. 
From inspection of data, the mRNA belonging to cluster C1 showed a 
decrease in expression when switching from high nitrogen to low nitro-
gen media, cluster C2 showed an approximately constant expression 
across high and low nitrogen conditions, and cluster C3 showed an 
increase in expression when switching from high nitrogen to nitrogen 
starvation conditions. The information of mRNA identities that belong 
in these three clusters can be found in Additional File 2: Table S1.

Additional file 2. Table S1. Clustering identities of the listed mRNA.

Additional file 3. Figure S2. Gene set analysis of nitrogen limitation in 
R. toruloides IFO0880. The differentially expressed genes were sampled 
at a timepoint of A). 8 hours, and B). 12 hours, and contrasted between 
nutrient limited conditions of C/N 100 and 150 versus C/N 5 (which 
served as a baseline). Since the same set of genes were differentially 
expressed in both C/N 100 and 150 in comparison with C/N 5, the 
conditions could be plotted interchangeably

Additional file 4. Figure S3. Lipidomic analysis of IFO0880 strain 
cultivated in different growth media containing C/N ratios of 5, 100 and 
150, and sampled at various timepoints. Quantified lipid classes of all 
three growth conditions sampled after A) 8 hours, B) 12 hours and C) 36 
hours of growth.

Additional file 5. Figure S4. Lipidomic analysis of IFO0880 grown in 
C/N 100 and 150 culture conditions and sampled at a timepoint of 88 
hours (oleaginous phase).

Additional file 6. File S5. Overlap of cluster identities of mRNA. The 
x-axis displays the 3 major mRNA clusters in the clustermap integrating 
multiomics data. The y-axis displays the distribution of these mRNA into 
the 3 major mRNA clusters from the RNA-seq clustering analysis.

Additional file 7. File S6. The reactions and metabolites (lipids) found 
in each of these quadrants were then assigned a color and these 
colors were superimposed onto a pathway map depicting the lipid 
biosynthetic pathways, extracted from a genome-scale model of R. 
toruloides (Dinh et al). The pathway visualization shown here is for 
C/N of 150. The Escher maps for visualization were adapted from the 
genome-scale model developed by Dinh et al. Reactions displayed 
using green are correlated positively with storage lipid increase (DAGs 
and TAGs), whereas those displayed with red are negatively correlated 
with storage lipid accumulation. The linear chain of reactions upstream 
of storage lipid synthesis were mostly positively correlated as expected. 
The reactions of phospholipid synthesis that utilize the same precursors 
as storage lipids, thus withdrawing flux from storage lipids synthesis 
are negatively correlated with storage lipid increase. This observa-
tion was verified from the lipidomic data where phospholipid values 
dropped in the oleaginous phase where DAG and TAG increased. A 
pattern of selective regulation of reactions within lipid biosynthetic 
pathways in the context of storage lipid accumulation was observed. 
The phospholipid biosynthetic pathways were negatively correlated 
to storage lipid accumulation in both maps (reaction pathway on the 
right), whereas reactions upstream of the storage lipid synthesis for 
acylation of the glycerol backbone were upregulated in both (bottom 
left). These patterns supported the observation that lipid accumulation 
during nitrogen starvation was accompanied by a rerouting of carbon 
flux towards storage lipids and away from glycerophospholipids. 
G3PD1i_c, glycerol-3-phosphate dehydrogenase (NAD); DHAPt_c_rm, 
dihydroxyacetone phosphate transport; DHAPAT_rm, Dihydroxyace-
tone phosphate acyltransferase; AGNPR_rm, Acylglycerone-phosphate 
reductase; GLYC3Pt_c_rm, glycerol 3-phosphate transport; G3PAT_rm, 
Glycerol-3-phosphate acyltransferase; AGPAT_rm, 1-Acyl-sn-glycerol-
3-phosphate acyltransferase; PAP_rm, PA phosphatase; DGAT_rm, 
Diacylglycerol acyltransferase; CDPDAGS_rm, CDP-diacylglycerol 
synthase; PSSA_rm, PS synthase; PAILS_rm, PI synthase; INOSTt_c_rm, 
myo-inositol transport; MI1PP_c, myo-inositol 1-phosphatase; M1PS_c, 
myo-inositol-1-phosphate synthase; CHOLPT_rm, Cholinephospho-
transferase; ETHAPT_rm, Ethanolaminephosphotransferase; PEMT_rm, 
PE methyltransferase; PMEMT_rm, Phosphatidyl-N-methylethanolamine 
methyltransferase; PDMEMT_rm, Phosphatidyl-N,N-dimethylethanola-
mine methyltransferase. inost_rm, myo-inositol [endoplasmic reticulum 

membrane]; pme_rm, Phosphatidyl-N-methylethanolamine; h_rm, H+; 
agnp_rm, Acylglycerone phosphate; nadph_rm, NADPH; ahcys_rm, 
S-adenosyl-L-homocysteine; pc_rm, Phosphatidylcholine; dhap_c, dihy-
droxyacetone phosphate [cytoplasm]; cdpdag_rm, CDP-diacylglycerol; 
cdpchol_rm, CDP-choline; ps_rm, Phosphatidyl-L-serine; mi1p__D_c, 
1D-myo-inositol 1-phosphate; pdme_rm, Phosphatidyl-N,N-dimethyletha-
nolamine; coa_rm, coenzyme A; pail_rm, 1-Phosphatidyl-1D-myo-inositol; 
pi_rm, phosphate; ser__L_rm, L-serine; inost_c, myo-inositol; nad_c, NAD; 
cdpea_rm, CDP-ethanolamine; h_c, H+; glyc3p_rm, glycerol 3-phosphate; 
acylcoa_rm, Acyl-CoA; ppi_rm, diphosphate; pe_rm, Phosphatidylethan-
olamine; h2o_c, H2O; g6p_c, D-glucose 6-phosphate; glyc3p_c, glycerol 
3-phosphate [cytoplasm]; dhap_rm, dihydroxyacetone phosphate 
[endoplasmic reticulum membrane]; pa_rm, Phosphatidate; amet_rm, 
S-adenosyl-L-methionine; tag_rm, Triacylglycerol; nadh_c, NADH; h2o_rm, 
H2O; ctp_rm, CTP; nadp_rm, NADP(+); pi_c, phosphate; cmp_rm, CMP; 
1agp_rm, 1-Acyl-sn-glycerol 3-phosphate; dag_rm, Diacylglycerol.

Additional file 8. Table S2. Media formulations of different C/N ratios 
used in this study (all amounts listed under C/N 5, 100 and 150 columns 
are volume amounts in mL to make up a total solution of 100 mL).

Additional file 9. Table S3. Composition of internal standards spiked-in 
during lipidomic extraction.

Additional file 10. Table S4. Intracellular lipidomic data of R. toruloides 
IFO0880 grown in nitrogen-sufficient and nitrogen-deficient media at 
timepoints described in Figure 1.
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